ferrelhadley
There is no love between us anymore.
As an aside, a compelling story about the financial collapse of 2008 puts this production limit at center stage. As supply failed to meet demand and prices rose (amplified by speculation, yes), the transportation, airline, tourism, automotive, and other directly related industries began to suffer and fold under pressure. The resulting economic slowdown deprived the sub-prime racket of oxygen, forcing the house of cards to collapse on itself. The racket worked as long as growth continued and housing prices did not falter. So we may have seen our first peak-oil economic disruption. The sub-prime tinder-box added to the pop. A recent article in Mother Jones touches on this interplay.
If for each year, we plot the amount of resource produced in that year as a fraction of the total resource extracted to date against the total extracted resource, a logistic function makes a straight, descending line intercepting the horizontal axis at the value of the ultimate resource. The peak production rate occurs at the half-way point along the trend. By contrast, constant-growth exponentials (infinite resource) follow a flat line: same fractional production every year. Below are four such examples for prized Pennsylvania anthracite coal, British coal, U.S. oil (including Alaska), and global oil.
For global oil resources (all liquids), we have consumed 1.2 trillion barrels so far. The data did not follow a logistic path in its early years, but has done so for the past three decades. If this portion is predictive, it says that our total resource is about 2.4 trillion barrels, putting us half-way along (therefore around the peak of the logistic rate). This by itself is a weak prediction. But the discovery rate we have seen (peaking in the 1960′s) does not lay the groundwork for us to expect a radical departure from the logistic line any time soon.
LinkWhy am I prone to heed the conclusions of this report? In large part, it is because of the scale of the problem. A 3% per year decline of conventional oil (considered mild in many models/scenarios), requires that we replace 2.5 Mbpd of capacity each year. Canadian tar sands, for instance, were at 1.2 Mbpd in 2008, and are projected to reach 3–4 Mbpd by 2020. This represents an impressive growth rate of 10% per year. But a 3% decline beginning in 2015 will need five times the marginal oil represented by the gain in this expanding front-runner. Other methods are less ready to scale than tar sands. In the U.S. alone, a 3% decline represents about 42 GW of yearly power loss, requiring the equivalent of about one nuclear plant per week in gas-to-liquid plants, coal-to-liquid plants, and other major infrastructure investment. Not to mention that coal mining and gas production must scale up for the challenge (can they?). When have you heard of workers moving to coal country for employment?
Off course from an American perspective the first decade of decline could probibly be managed by buying small cars. But the facts remain, we are very late in building a post oil infrastructure and even if we discount CO2 as an issue, non conventional liquid hydrocarbon sources will take a long time to ramp up.
The UK does have an expanding rail network but I cant help wonder if in ten years time we will be planning to shut down the outer lanes of the motorways and lay down rail tracks on them.
Still at least we have some modest wind farms under construction at 2010s energy prices.