How the new solar mini-refinery works
The process chain of the new system combines three thermochemical conversion processes: Firstly, the extraction of CO2 and water from the air. Secondly, the solar-thermochemical splitting of CO2 and water. Thirdly, their subsequent liquefaction into hydrocarbons. CO2 and water are extracted directly from ambient air via an adsorption/desorption process. Both are then fed into the solar reactor at the focus of a parabolic reflector. Solar radiation is concentrated by a factor of 3,000, generating process heat at a temperature of 1,500 degrees Celsius inside the solar reactor. At the heart of the solar reactor is a ceramic structure made of cerium oxide, which enables a two-step reaction – the redox cycle – to split water and CO2 into syngas. This mixture of hydrogen and carbon monoxide can then be processed into liquid hydrocarbon fuels through conventional methanol or Fischer–Tropsch synthesis.
Carbon-neutral fuel made from sunlight and air
Researchers from ETH Zurich have developed a novel technology that produces liquid hydrocarbon fuels exclusively from sunlight and air. For the first time worldwide they demonstrate the entire thermochemical process chain under real field conditions. The new solar mini-refinery is located on the...
ethz.ch
Interview with the scientists
BBC World Service - Science In Action, Jet fuel from thin air
A solar powered solution to emissions creates aviation fuel from atmospheric gases
www.bbc.co.uk